

111 Short Module on Security

Copy ...Rights

- This slide set is the ownership of the 6DEPLOY project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorisation
- Using part of this material must mention 6DEPLOY courtesy
- PDF files are available from <u>www.6deploy.eu</u>
- Looking for a contact ?
 - Mail to : martin.potts@martel-consulting.ch
 - Or jordi.palet@consulintel.es

Acknowledgements

- Carlos Martinez, Arturo Servin LACNIC
- Jordi Palet Consulintel
- János Mohácsi, NIIF/HUNGARNET Hungary
- Octavio Medina, Octavio Medina, Laurent Toutain, ENST
- Bernard Tuy, Jérôme Durand, Emmanuel Goiffon, Renater
- Peter Kirstein, Steve Hailes, Piers O'Hanlon, UCL
- Wolfgang Fritsche, IABG
- Jim Bound, Hewlett Packard
- Patrick Grostete, Cisco (now Arch Rock)
- Mohsen Souissi, AFNIC
- Alain Durand, Sun Microsystems
- Bill Manning, ISI
- Alain Baudot, France Telecom R&D
- Pedro Lorga, FCCN
- And many others

- Comparison of IPv4 and IPv6
- Vulnerabilities in IPv6
- Recommendations

IPv4 / IPv6 Comparison

Comparing IPv4 / IPv6 in One Slide

IPv4 and IPv6 have very similar features.
 However the way these features is implemented is different.

	IPv4	IPv6	
Addressing	32 bits	128 bits	
HW address resolution	ARP	ICMPv6 ND/NA	
Host auto- configuration	DHCP & ICMP RS/RA	ICMPv6 RS/RA & DHCPv6 (optional)	
IPsec	Optional Recommended (not mandatory)		
Fragmentation	Both hosts and routers can fragment	Only hosts fragment packets	

- IPv6 uses 128 bit addresses
- In a similar way to IPv4
 - Addresses can be aggregated in prefix in order to simply routing
 - Different «types» of addresses are defined
 - unicast, anycast, multicast
 - Addresses can have different "scopes"
 - link-local, global
- A network host can use different addresses of different types and scopes at each given time
 - This is less common in IPv4, but it can also happen

HW Address Resolution

- Hardware address resolution is needed when transmitting IP (v4/v6) datagrams over an Ethernet / 802.11 or similar layer 2 segment
- IPv4
 - ARP: address resolution protocol
 - A separate entity from the rest of the stack
- IPv6
 - ARP features are folded into ICMPv6's ND (neighbor discovery) sub-protocol

Host Auto-Configuration

- Host-autoconfiguration allows "plug-andplay" network access
- IPv4
 - DHCP + some ICMP messages
- IPv6
 - Two ways: stateless and stateful
 - SLAAC: Stateless Auto Configuration (ICMPv6)
 - DHCPv6: similar to v4 DHCP, stateful

 Packet fragmentation occurs when a packet being forwarded is too big for the outgoing link MTU

IPv4

 Any intermediate router can fragment and reassemble

IPv6

- Only hosts can fragment and reassemble
- Path MTU discovery (ICMPv6)

IPSec allows encryption of IP packet flows

IPv4

- IPSec was an afterthought and was implemented years after IPv4 was widely deployed
- Thus IPSec support was never included in host requirements

IPv6

- IPv6 was born with IPSec support already considered
- IPSec support is however a recommendation but it's not a mandatory requirement

Vulnerabilities and Attacks

Inherent vulnerabilities

- Less experience working with IPv6
- New protocol stack implementations
- Security devices such as Firewalls and IDSs have less support for IPv6 than IPv4
- More complex networks
 - Overlaid with tunnels
 - Dual stack (two protocols on the same wire)

Neighbor Discovering Protocol

- Instead of ARP (IPv4), IPv6 uses Neighbor Discovering Protocol (NDS)
- NDP is based on ICMPv6
- Instead of a broadcast (ARP), NDP uses Neighbor Solicitation y Neighbor Advertisement messages

NDP associated vulnerabilities

- DoS attacks to routers by filling Neighbor Cache with many entries
- Some mittigations are:
 - Rate-limit processing the Neighbor Solicitation (NS)
 - Monitoring NDP traffic (i.e. NDPMon)
 - Deploy SEND (SEcure Neighbor Discovery) RFC3791
 - Static entries
 - draft-gashinsky-v6nd-enhance-00

Autoconfiguration

- Two flavors:
 - Stateless: SLAAC (Stateless Address Auto-Configuration), based in ICMPv6 (Router Solicitation and Router Advertisement)
 - Stateful: DHCPv6
 - SLAAC is mandatory and DHCPv6 is optional
- Routers send Router Advertisement (RA) messages to communicate configuration parameters:
 - Prefixes
 - Routes
 - MTU, hop-limit
 - Timers

Vulnerabilities associated with autoconfiguration

- Rogue RAs and Rogue DHCPv6 servers
 - Intentionally
 - Man in the middle attacks
 - Accidentally
 - Windows sharing!!!
- DoS attacks
- Some considerations documented in RFC6104 and draft-gont-v6ops-ra-guardevasion

RA-guard for switches (RFC6105) and RA-monitor

- But only for accidental RAs
- Cannot detect complex attacks (next hop, fragmentation)
- Router Advert MONitoring Daemon (RAMOND)
- SEND
- Static configuration

Attacker can claim victim's IP address

- Attacker hacks any victim's DAD attempts
- IP address can't be configured

- SEND offers efficient mitigation to many issues, but not all, and is not easy to deploy
- Proxying link-operation at first-hop could provide almost the same and a simpler deployment model
 - Requires deployment of smart switches

Transition Mechanisms

- Protocol 41 and other tunnels
 - Unauthorized traffic leaving your network as tunnels (6to4, Teredo, tunnels)
- Automatic tunnels
 - Where is your traffic going?
- Relays to IPv6
 - Who is using your relays?

- End-to-End connectivity without NAT
- NAT and NAT-PT (Protocol Translation) for IPv4 used as security strategy (should it be?)
- RFC5902 "Thoughts on IPv6 NAT"
- IPv6-to-IPv6 address mapping (stateless NAT66 as discussed by IETF). Maps a private IPv6 address range (ULA)

- I do not have IPv6 in my network and I won't support it. I do not care then
- Well, you should
- Even though you do not run IPv6 in your network, you may be vulnerable:
 - Rogue RA (Windows Network Sharing)
 - 6to4, Teredo and other tunnel technologies
- All these may open holes in your network security

Recommendations

Countering Threats in IPv6

- Scanning Gateways and Hosts for weakness
- Scanning for Multicast Addresses
- Unauthorised Access Control
- Firewalls
- Protocol Weaknesses
- Distributed Denial of Service
- Transition Mechanisms

Scanning Gateways and Hosts

- Subnet Size is much larger
 - About 500,000 years to scan a /64 subnet@1M addresses/sec
- But...
 - IPv6 Scanning methods are changing
 - DNS based, parallelised scanning, common numbering
 - Compromising a router at key transit points
 - Can discover addresses in use
- Avoid:
 - Using easy to guess addresses

Scanning Multicast Addresses

- New Multicast Addresses IPv6 supports new multicast addresses enabling attacker to identify key resources on a network and attack them
 - E.g. Site-local all DHCP servers (FF05::5), and All Routers (FF05::2)
 - Addresses must be filtered at the border in order to make them unreachable from the outside
 - To prevent smurf type of attacks: IPv6 specs forbid the generation of ICMPv6 packets in response to messages to global multicast addresses that contain requests

Security of IPv6 addresses

- Cryptographically Generated Addresses (CGA) IPv6 addresses [RFC3972]
 - Host-ID part of address is an encoded hash
 - Binds IPv6 address to public key
 - Used for securing Neighbour Discovery [RFC3971]
 - Is being extended for other uses [RFC4581]
- Privacy addresses as defined [RFC 4941]
 - prevents device/user tracking from
 - makes accountability harder

Unauthorised Access Control

- Policy implementation in IPv6 with Layer 3 and Layer 4 is still done in firewalls
- Some design considerations
 - Filter site-scoped multicast addresses at site boundaries
 - □ Filter IPv4 mapped IPv6 addresses on the wire

Unauthorised Access control

- Non-routable + bogon (unallocated) address filtering slightly different
 - in IPv4 easier deny non-routable + bogons

in IPv6 simpler to permit legitimate (almost)

Action	Src	Dst	Src port	Dst port
deny	2001:db8::/32	host/net	O-(O)	
permit	2001::/16	host/net	any	service
permit	2002::/16	host/net	any	service
permit	2003::/16	host/net	any	service
Deny	3ffe::/16	host/net	any	service
deny	any	any		

Doc prefix - NO

6to4 - YES

6bone - NO

Consult for non exisiting addresses at:
http://www.space.net/~gert/RIPE/ipv6-filters.html

Spoofing

- IPv6 address are globally aggregated making spoof mitigation at aggregation points easy to deploy
- Simpler to protect due to IPv6 address hierarchy
- However host part of the address is not protected
 - You need IPv6 <- >MAC address (user) mapping for accountability!

Amplification (DDoS) Attacks

- There are no broadcast addresses in IPv6
 - This stops any type of amplification attacks that send ICMP packets to the broadcast address
 - Global multicast addresses for special groups of devices, e.g. link-local addresses, etc.
- IPv6 specifications forbid the generation of ICMPv6 packets in response to messages to global multicast addresses
 - Many popular operating systems follow the specification
 - No packets with multicast sources should be allowed

Mitigation of IPv6 amplification

- Be sure that your host implementations follow the ICMPv6 spec [RFC 4443]
- Implement Ingress Filtering
 - Defeats Denial of Service Attacks which employ IP Source Address Spoofing [RFC 2827]
- Implement ingress filtering of IPv6 packets with IPv6 multicast source address

Mixed IPv4/IPv6 environments

- Some security issues with transition mechanisms
 - Tunnels often interconnect networks over areas supporting the "wrong" version of protocol
 - Tunnel traffic often not anticipated by the security policies. It may pass through firewall systems due to their inability to check two protocols in the same time
- Do not operate completely automated tunnels
 - Avoid "translation" mechanisms between IPv4 and IPv6, use dual stack instead
 - Only authorised systems should be allowed as tunnel end-points

IPv6 transition mechanisms

- ~15 methods possible in combination
- Dual stack:
 - enable the same security for both protocol

Tunnels:

- ip tunnel punching the firewall (protocol 41)
- gre tunnel probably more acceptable since used several times before IPv6
- I2tp tunnel udp therefore better handled by NATs

L3 – L4 Spoofing in IPv4 with 6to4

■ For example, via 6to4 tunnelling spoofed traffic can be injected from IPv4 into IPv6.

□ IPv4 Src: IPv4 Address

IPv4 Dst: 6to4 Relay Anycast (192.88.99.1)

□ IPv6 Src: 2002:: Spoofed Source

IPv6 Dst: Valid Destination

- IPv6 architecture and firewall requirements
 - No need to NAT same level of security with IPv6 possible as with IPv4 (security and privacy)
 - Even better: e2e security with IPSec
 - Weaknesses of the packet filtering cannot be hidden by NAT
 - IPv6 does not require end-to-end connectivity, but provides end-to-end addressability
 - Support for IPv4/IPv6 transition and coexistence
 - Not breaking IPv4 security
- Most firewalls are now IPv6-capable
 - Cisco ACL/PIX, Juniper NetScreen, CheckPoint
 - Modern OSes now provide IPv6 capable firewalls

Firewall setup

No blind ICMPv6 filtering possible:

	Echo request/reply	Debug		
	No route to destination	Debug – better error indication		
	TTL exceeded	Error report		
specific	Parameter problem	olem Error report (e.g. Extension header errors)		
	NS/NA	Required for normal operation – except static ND entry		
	RS/RA	For Stateless Address Autoconfigration		
	Packet too big	Path MTU discovery		
	MLD	Requirements in for multicast		

- Problematic protocols for stateful filtering
 - FTP
 - Complex: PORT, LPRT, EPRT, PSV, EPSV, LPSV (RFC 1639, RFC 2428)
 - Other non trivially proxy-able protocol:
 - No support (e.g.: H.323)
 - Skype
 - Check with your firewall manufacturer for protocol support

- IPv6 Routing Attack
 - Use traditional authentication mechanisms for BGP and IS-IS.
 - Use IPsec to secure protocols such as OSPFv3 and RIPng
- Viruses and Worms
- Sniffing
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4
- ICMP attacks slight differences with ICMPv4
 - Recommendations for Filtering ICMPv6 Messages in Firewalls (RFC4890)
 - □ TCP ICMP attacks slight differences with ICMPv6
 - http://tools.ietf.org/html/draft-ietf-tcpm-icmp-attacks-06
- Application Layer Attacks
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6