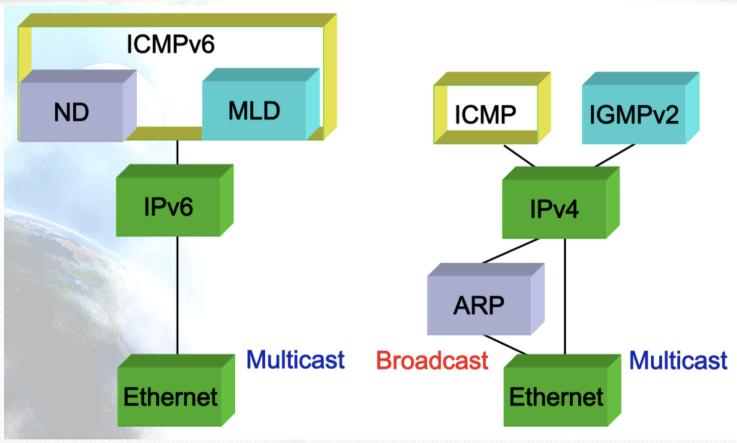


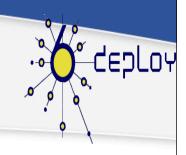
ICMPv6, DHCPv6 y Túneles

Roque Gagliano
roque@lacnic.net
LACNIC

- Introducción a ICMPv6.
- Descubrimiento de Vecinos y Autoconfiguración de interfaces.
- Autodescubrimiento de MTU de camino (PMTUD).
- Túneles.

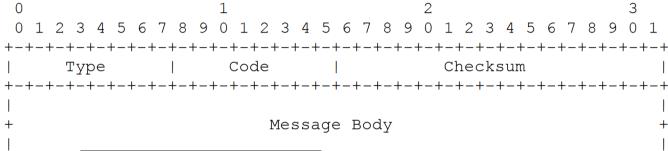


- Introducción a ICMPv6.
- Descubrimiento de Vecinos y Autoconfiguración de interfaces.
- Autodescubrimiento de MTU de camino (PMTUD).
- Túneles.



- Es parte integral del Protocolo IPv6 y DEBE ser implementado en cada nodo.
- Next-Header=58.
- Existen mensajes de Error y de Información.
- En los mensajes de Error se incluye porción del paquete original hasta llegar a 1280bytes.
- Todos los mensajes tienen la forma:

Tipo - Código - Checksum - Cuerpo.



- Diagnósticos (ping).
- Descubrimiento de Vecinos, de routers y de parámentros.
- Autoconfiguración de interfaz.
- Resolución de direcciones (IP a Capa de enlace).
- Detección de próximo salto (ruta por defecto).
- Detección de caidas de vecinos.
- Detección de direcciones duplicadas.
- Redireccionamiento.
- Asociación a grupos de múlticast.

0 a 127

Error

128 a 255

Infor.

1 Destination Unreachable

2 Packet Too Big

3 Time Exceeded

4 Parameter Problem

128 Echo Request

129 Echo Reply

130 Group Membership Query

131 Group Membership Report

132 Group Membership Termination

133 Router Solicitation

134 Router Advertisement

135 Neighbor Solicitation

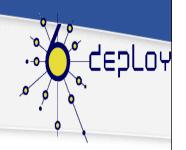
136 Neighbor Advertisement

137 Redirect

Códigos definidos para Mensajes de Control.

Códigos definidos para funciones de multicast.

Códigos definidos para ND (neighbor discovery).



Type = 0-127	Code	Checksum
Parameter		

El mayor contenido posible del paquete invocado sin que el paquete ICMPv6 resultante exceda de 1280 bytes (mínima Path MTU IPv6)

- Destino Inalcanzable (tipo =1, parámetro =0)
 - No hay ruta al destino (código = 0).
 - Comunicación prohibida administrativamente (código = 1).
 - Más allá del alcance de la dirección de origen (código = 2).
 - Dirección inalcanzable (código = 3).
 - Puerto inalcanzable (código = 4).
 - Dirección de origen falló política ingreso/egreso (código = 5).
- Paquete demasiado grande (tipo =2, código =0, parámetro = MTU).
- Tiempo Excedido (tipo =3, parámetro =0).
 - Limite de saltos excedido (código = 0).
 - Tiempo de reensamblado de fragmentos excedido (código =1).
- Problemas de Parámetros (tipo =4, parámetro=offset to error).
 - Campo de cabecera erróneo (código = 0).
 - Tipo no reconocido de "Next Header" (código =1).

- Introducción a ICMPv6.
- Descubrimiento de Vecinos y Autoconfiguración de interfaces.
- Autodescubrimiento de MTU de camino (PMTUD).
- Túneles.

- ND definida en RFC4861.
- Permite:
 - Configuración de interfaces (autoconf.)
 - Detección de duplicados (DAD Duplicate Address Detection).
 - Detección de direcciones de capa de enlaces
 - Detección de vecinos inalcanzables (NUD Neighbor Unreachability Detection).
 - Redireccionamiento.

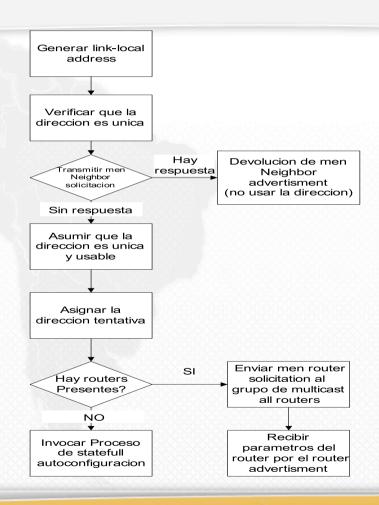
- Utiliza 5 nuevos campos ICMPv6:
 - 133 Router Solicitation (RS).
 - 134 Router Advertisement (RA).
 - 135 Neighbor Solicitation (NS).
 - 136 Neighbor Advertisement (NA).
 - 137 Redirect

- Permite la configuración automática de los terminales.
- Dos Mecanismos:
 - Sin Mantener Estados (stateless).
 - Manteniendo Estados (statefull).
- Los dos procolos involucrados son: ICMPv6 y DHCPv6.

ICMP v6 Router Advertisement (RA) Prefix: 2800:a0:0:8001::/64

ROUTER

MAC: 00:17:f2:4d:a8:0e


inet6: 2800:a0:0:8001:217:f2ff:fe4d:a80e

- Los terminales son pasivos o pueden enviar mensages de "Router Solicitation" (RS).
- RA se envían a grupo de multicast: ff02::1 (all systems). Incluye información de prefijos en la red, parámetros y banderas de configuración. Incluye también valor de timers.
- RS se envían a grupo de multicast: ff02::2 (all routers).

Autoconfiguración Stateless:

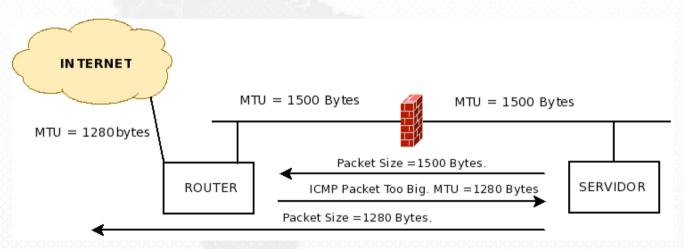


- Por defecto los mensajes de RA no son autenticados.
- Esto genera un problema de seguridad similar a servidores de DHCPv4 fraudulentos.
- También hay problemas con equipos mal configurados que pueden afectar a todo un segmento.
- La solución es el uso de Certificados Digitales a través de SEND: Secure Neighbot Discovery.

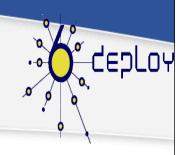
- DHCPv6 puede trabajar en conjunto con Stateless Autoconf. Para la asignación de parámetros adicionales.
- Parámetros posibles: Servidor DNS recursivo, dominio de la red, servidor de ntp, servidor sip, servidor NIS o NIS+ o servidor BCMCS.
- En linux:
 - Autoconf: radvd.
 - DHCP: Wide-dhcpv6 o ISC-dhcpv6.

- Utiliza el protocolo DHCPv6 (RFC 4361).
- Pueden utilizarse Relays como en DHCPv4.
- Utiliza UDP puertos 546 y 547.
- Direcciones de multicast:
 - ff02:::1:2 (All DHCPv6 relay agents and servers)
 - ff05::1:3 (All DHCPv6 Servers)
- Implementa la función de delegación de prefijos, importante para proveedores de servicio.
- Con DHCPv6 puedo tener redes "no /64".

- El protocolo ARP desaparece y se sustituye por ND.
- Un equipo que necesita enviar un paquete IPv6 a un destino en su subred, necesita conocer la MAC del destino.
- ND funciona enviando un paquete NS a una dirección de multicast.
- El nodo solicitante incluye su dirección MAC en la solicitud.
- La respuesta es unicast a la dirección del solicitante y también incluye dirección MAC.

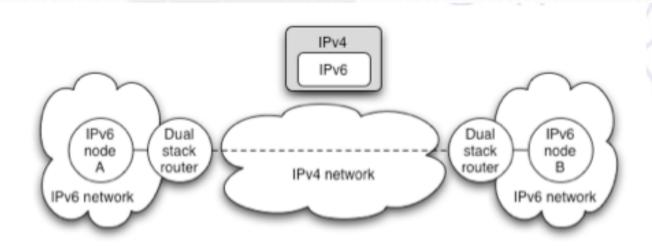


- Introducción a ICMPv6.
- Descubrimiento de Vecinos y Autoconfiguración de interfaces.
- Autodescubrimiento de MTU de camino (PMTUD).
- Túneles.



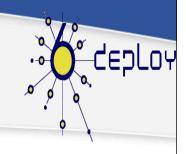
• El mínimo MTU que DEBE ser soportado en IPv6 son 1280bytes. PMTUD es mandatorio.

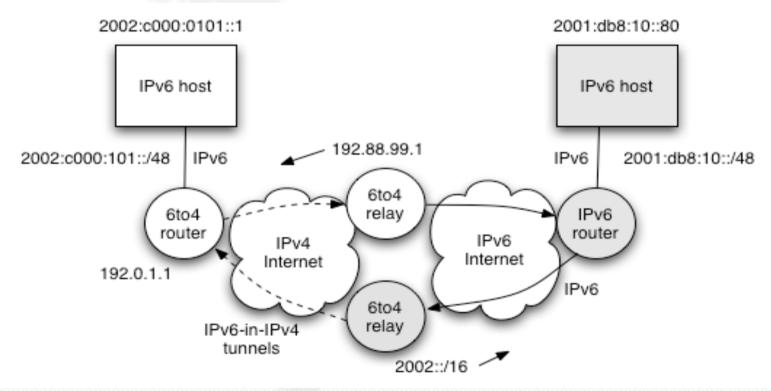
• TCP va a ajustar automáticamente el tamaño del segmento que envía a la capa IP.



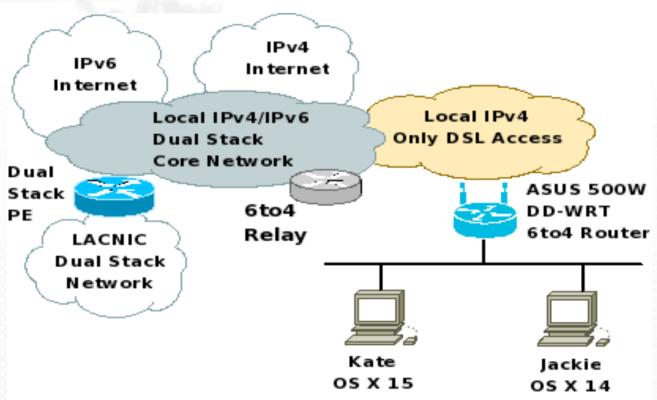
- Introducción a ICMPv6.
- Descubrimiento de Vecinos y Autoconfiguración de interfaces.
- Autodescubrimiento de MTU de camino (PMTUD).
- Túneles.

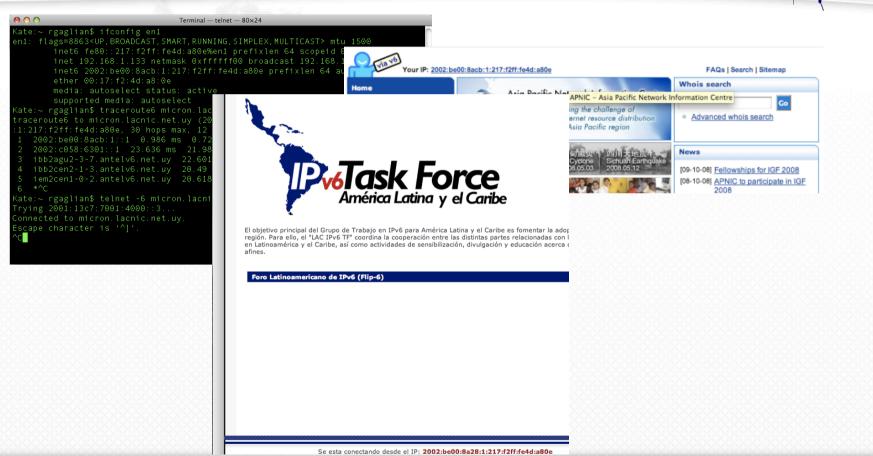
- Cuando realizamos túneles, estamos utilizando un protocolo de red como capa de enlace virtual.
- IPv6 puede entonce ser una red virtual sobre Internet v4.

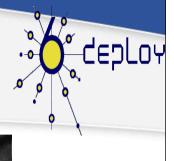

- Manuales:
 - +6in4 (IPv6 sobre IPv4 protocol 41).
 - GRE (IPv6 sobre GRE sobre IPv4).
 - +L2TP
- Automáticos:
 - +6to4
 - + Teredo.
 - * ISATAP (Intra-site Automatic Tunnel Addressing Protocol).
 - AYIYA (Anything In Anything)

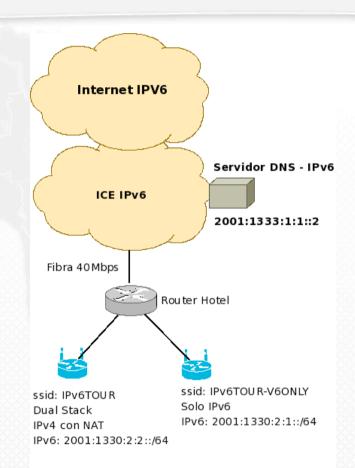


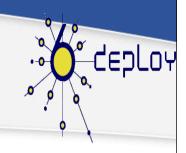
- A cada IPv4 global se le asigna un /48 IPv6.
- Se destina bloque 2002::/16 (global unicast) para 6to4.
- Los bits 17-32 se completan con la dirección IPv4.
- Ejemplo: 192.168.1.1 <---> 2002:c000:0101::/48.
- Entre Routers 6to4 se utilizan túneles IPv6 sobre IPv4 (puerto 41).
- Existen Equipos Ilamados Relay que funcionan como puentes entre el mundo IPv4 y el IPv6.
- Se define la dirección 192.88.99.1 para ser utilizada por los relays. Por favor Instale Relays!











PREGUNTAS???

MUCHAS GRACIAS!