

AUTOCONFIGURATION AND DHCP FOR IPV6

Francisco J. Obispo fobispo@gmail.com_

Director de Operaciones y Red Académica Fundación Centro Nacional de Innovación Tecnológica <u>http://www.cenit.gob.ve</u> Caracas - Venezuela

Topics

- * Background: the need for auto-configuration
- * Router Advertising (RA)
- * DHCPv6
 - ✓ Stateless (DHCPv6 Options)
 - ✓ Stateful (Full IPv6 and Prefix Assignments)

Background

The need for auto-configuration.

- * Avoid Manual configurations
- * Prevent unnecessary traffic in the network
- * Provide a scalable solution to huge networks
- * "Ease" configuration, facilitate site renumbering

ROUTER ADVERTISEMENTS

Design Goals

- * Manual configuration before connecting to the network not required
- * Small sites should not require presence of "stateful" servers
- * Large sites with multiple networks and router should not require "stateful servers"
- * Facilitate graceful renumbering
- * Give the "admins" the ability to mix other configuration methods

- * It is a "stateless" protocol (no information is stored on the routers about the client)
- * Advertisements are ICMPv6 Messages sent to Multicast Group FF02::1 (all systems)
- * Router Solicitations are sent to Multicast Group FF02::2 (all routers)

Implementing in Linux * Install the radvd package: aptitude install radvd

* Add the following to /etc/radvd.conf

Implementing in Linux

* Make sure you have support to IPv6 routing enabled:

echo "1" > /proc/sys/net/ipv6/conf/all/forwarding

- * Start the server /etc/init.d/radvd start
- * Make sure its running, otherwise check the logs
- * radvd does not care about routing, this is done at the OS level

DHCPV6

Stateless Mode

Modes of Operation.

- * Two (2) modes of operation
 - ✓ Stateless used if another method of assigning IPv6 addresses is preferred over DHCPv6
 - ✓ Stateful used to assign IPv6 address and/or prefixes

Stateless

- * In this mode, the DHCPv6 server will work in a team with RADVD to provide configuration services to the clients
- * The RADVD daemon will send RAs periodically to the link layer
- * The DHCPv6 daemon will send other configuration parameters
- * It will also respond to explicit requests

Stateless

- * The options that can be configured using this mode are:
 - ✓ Recursive Domain Name Servers (DNS)
 - ✓ The Domain Name (for the search path)
 - ✓ NTP Servers
 - ✓ SIP servers
 - ✓ NIS and NIS+ servers

✓ BCMCS Servers (BroadCastMulticastService)

Implementing a server in Unix (Linux & BSD Based)

* Using the WIDE-KAME DHCPv6 Server (DHCP6S)* Install the service:

aptitude install wide-dhcpv6-server

Implementing a server in Unix (Linux & BSD Based)

* Edit or create /etc/wide-dhcpv6/dhcp6s.conf and add:

option domain-name-servers 2001:1338::5 2001:1338::3; option domain-name "workshop.lacnic.net";

Implementing a server in Unix (Linux & BSD Based)

* Make sure RADVD is running and that all necessary parameters are being announced

* Fire up the clients and wait for the magic to happen

Setting up the Client in Linux/Unix

* Install the DHCP client package:

aptitude install wide-dhcpv6-client

* Make sure you have ipv6 support loaded into the OS
 (in linux) modprobe ipv6 ; echo "ipv6" >>/etc/modules

Setting up the Client in Linux/Unix

* Edit /etc/wide-dhcpv6/dhcp6c.conf with:

```
interface eth1
```

```
information-only;
request domain-name-servers;
request domain-name;
script "/etc/wide-dhcpv6/dhcp6c-script";
};
```

Setting up the Client in Linux/Unix

* Edit /etc/network/interfaces (or the like) and add the following:

iface eth1 inet dhcp up /etc/wide-dhcpv6/dhcp6c-ifupdown start down /etc/wide-dhcpv6/dhcp6c-ifupdown stop

DHCPV6

Stateful Mode

Highlights
 * It is a Client-Server Protocol - the client needs to specify the type of resource it wants

- * DHCP Servers receive messages from clients using reserved link-scoped multicast addresses (FF02::1:2, FF05::1:3)
- * Messages can be relayed to a DHCPv6 server if not on the same link using an agent
- * Once the client has determined the IPv6 address of the server it may in some circumstances send messages directly using Unicast

```
* Disable Stateless auto-configuration in /etc/radvd.conf
   interface eth0
     AdvSendAdvert on;
     prefix 2001:1338:A:0:1::/64
       AdvOnLink on;
       AdvAutonomous off;
     };
   };
```

Setting up the Server

* Edit (again) / etc/wide-dhcpv6/dhcp6s.conf

```
option domain-name-servers 2001:1338::5 2001:1338::3;
option domain-name "workshop.lacnic.net";
```

```
interface eth0 {
    address-pool v6workshop 3600;
```

```
};
```

```
pool v6workshop {
    range 2001:1338:FFFF:2::1000 to 2001:1338:FFFF:2::5000;
};
```

Setting up the client.

```
* Edit (again) /etc/wide-dhcpv6/dhcp6c.conf
```

```
interface eth1
{
   send ia-na 0;
   request domain-name-servers;
   request domain-name;
   script "/etc/wide-dhcpv6/dhcp6c-script";
};
id-assoc na 0 { Non-temporary Address
};
```

Setting up the client.

- * Other Features:
 - ✓ Authentication
 - ✓ Rapid commit (don't wait for advertisements)
 - ✓ Solicit a specific address to the server using the ia-na option

DHCPV6

Prefix Delegation_


```
Setting up for Prefix Delegation.
```

```
* Edit (server) / etc/wide-dhcpv6/dhcp6s.conf
```

```
host router-salvador {
    duid 00:01:00:01:aa:bb;
    prefix 2001:1338:ABCD::/48 infinity;
};
```

* Edit (client) /etc/wide-dhcpv6/dhcp6c.conf

DHCPv6 Setting up for Prefix Delegation. * Edit (client) /etc/wide-dhcpv6/dhcp6c.conf interface eth0 { send ia-pd 0; }; id-assoc pd 0{ prefix-interface wlan0 { sla-id 1; }; prefix-interface wlan1{ sla-id 2; }; };

Setting up for Prefix Delegation.

- * The solution in open source is not "too pretty", it requires additional integration with radvd which is currently unavailable
- * Support in Cisco IOS is working
- * A testbed can be set up in order to try this technology

M UITO OBRIGADO