CEPLOY

IPv6 Services over xDSL Networks

Speaker name email address

Copy ... Rights

- This slide set is the ownership of the 6DEPLOY project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorization
- Using part of this material must mention 6DEPLOY courtesy
- PDF files are available from www.6deploy.org
- Looking for a contact ?
 - Mail to : martin.potts@martel-consulting.ch

Presentation Outline

- The Greek Schools Network
- Why to move to IPv6?
- Deployment Strategies
- Address Delegation
- Cooperation
- Experiences

GSN Organization Profile

- The Greek School Network (GSN) is the educational intranet of the Ministry for National Education and Religious Affairs of Greece
- Objectives:
 - Provision of IP connectivity and IT services to the vast majority of primary/secondary schools in Greece
 - Facilitate the integration of new technologies in the educational process

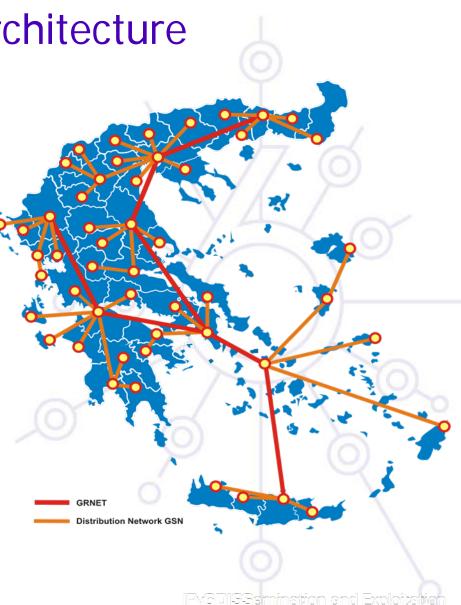
Network Architecture

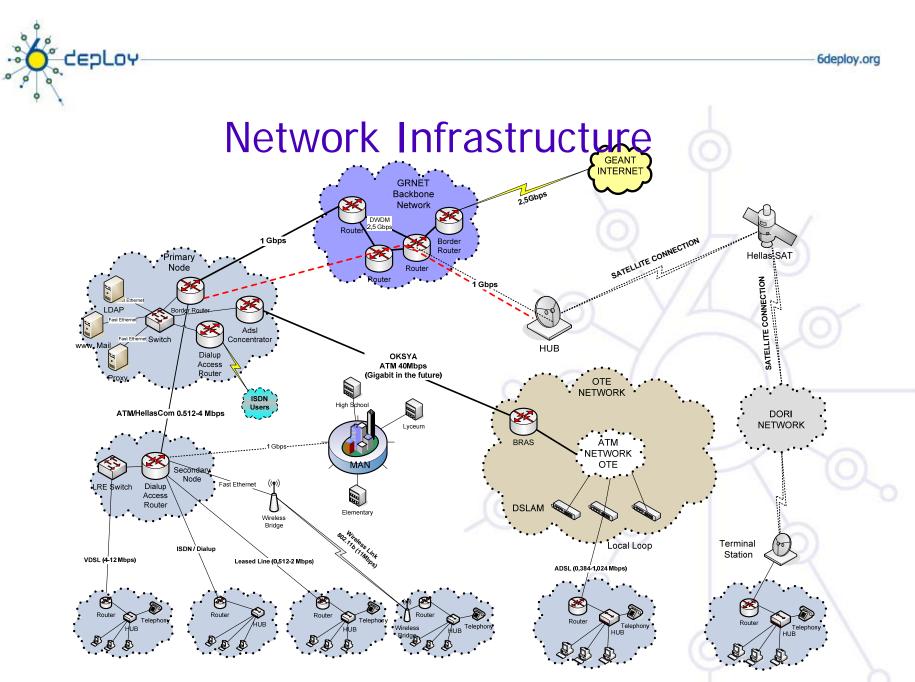
Backbone:

8 major PoPs, interconnected via GRNET

Distribution Network:

51 nodes


(8 main, 43 secondary)


Access Network technology:

- Dialup (ISDN, PSTN)
- ADSL
- Leased Lines (SDSL, VDSL),
- Wireless

Number of connected schools:

- 14.200 primary & secondary
- schools (~100%)
- 2.862 administration offices

IPv6DISSemination and Exploitation

GSN Services

Basic Services

- Broadband / dial-up access
- E-mail, Mailing lists
- Forums, instant messaging, blogs
- Portal (<u>www.sch.gr</u>)
- Web-Hosting / Creation
- Web-Filtering, Proxy/Cache
- E-cards, E-News
- Security CERT

- Advanced Services
 - E-learning
 - Real time services, VoD
 - Secure Content Delivery
 - Teleconference, Voice over IP

novismmetet all law-

IPvSUltsammation

GSN Services (#2)

Infrastructure Services

- Directory Service (LDAP)
- Public Key Infrastructure AAI
- User registration service
- Statistics

LepLoy

- Helpdesk
- QoS Monitoring
- DNS
- GIS, Remote control

I Pivisi Di Loisiannin sition

Why to move to IPv6?

- IPv6 removes the limitations imposed by the IPv4 address shortage
 - Every school has a NAT / PAT gateway due to address shortage
 - Difficult to debug interconnection problems
 - IPv6 provides enough address space for every school and pupil!
- P2P applications do not work with servers behind NAT/PAT
 - Multimedia e-learning and peer-to-peer virtual collaboration applications
 - Development of P2P applications becomes easier

Why to move to IPv6?

- Management and security issues
 - Deployment procedures in large numbers (auto-configuration of CPE routers and PCs)
 - Address fragmentation resolved Simplify routing
 - Easier aggregation of classes of users
 - Security policies can be simplified using the IPv6 addressing schema which identifies various types or user groups and services

Why to move to IPv6?

- Innovation Expose to new technologies
 - Access to new technologies is now a reality for young students
 - Today's school pupils are the future citizens (or engineers)
 - National programs target today for school laptops per child -Complementary programs to OLPC initatives
 - IPv6 allows the development of new advanced services that exploit features unique to IPv6 environments, such as enhanced security, multicast or mobility
 - Multiply the impact of other IPv6-enabled networks in Greece

Deployment Phases

- Phase 1 (2004-2005) Design studies & Preparation
 - Acquire address space, lab trials, upgrade core network, upgrade basic operational services, network monitoring
- Phase 2 (2006-2007) Pilot Limited size network
 - Limited size trials, acquire operational experience, define specifications for long term hardware and software upgrades
- Phase 3 (2007-2008) IPv6 & Broadband access
 - Large deployment of IPv6 access routers and servers, studies related to PC-labs (management, security, etc)
- Phase 4 (2009) Applications
 - Large scale PC-lab upgrades, development of new services

Deployment Strategy for *Core network*

- All major PoPs have been upgraded (dual-stack) to IPv6
 - First part of the network to enable IPv6
 - Established IPv6 BGP peering with GRNET
 - Internal routing fully supports IPv6

Deployment Strategy for *Core network*

- Secondary distribution nodes still do not support IPv6
 - Distribution nodes today aggregate dialup connections from (obsolete) ISDN access routers – Limitations in memory and CPU capabilities
 - GSN decided to shift interconnection model from dialup/ISDN to broadband (xDSL, wireless, etc).
 - New (broadband) access model resulted to revise network upgrade path and hardware specifications for new equipment
 - Plans to connect schools via (metro) Ethernet services to new distribution nodes. Public metropolitan area networks (MANs) are currently deployed.

Deployment Strategy for Access Network

- Started with on site trials at 50 schools
 - Create multiple CPE configuration files based on different interconnection models
 - Validate IPv6 address assignment scheme
 - Easy IPv6 address management and dynamic assignment for every school CPE (using DHCP prefix delegation)
- Moving to ~500 schools
 - Deploy IPv6 up to the access router in each school
 - PC labs still lacking IPv6-enabled OS due to administrative (¬ technical) reasons
- Enable IPv6 to ~3000 schools in a large deployment program
 - All schools will be connected via broadband access uplinks
 - Deployment still in progress Complete in 2008

Deployment Strategy for *Infrastructure Servers*

- Upgrade all servers to become dual-stack
- Second upgrade services to support IPv6
 - Email (SMTP, IMAP, POP3)
 - Web hosting
 - GSN Web portal (www.sch.gr)
 - Web proxy / web filtering The most difficult task!
 - AAA (Radius software and attributes)
 - Instant Messaging
 - Directory service (LDAP)
- Upgrade DNS service and update DNS entries
- New datacenters are equipped with IPv6-capable (aka OS and software) server farms

IFMEDISESSIMMETRON SHOLES

Deployment Strategy for *School PC labs*

- The most demanding challenge today
 - Administrative difficulties due to the large number (aka thousands) of PCs deployed in ~15K end sites
 - Management model of PC labs has changed the last years. Today, the administration of the labs is delegated to each school – Lack of central control / coordination
 - PC labs are based on (obsolete) operating systems, such as M\$ W2K
 - Large costs for IPv6 upgrades combined with software upgrades and hardware lifecycles
- Pilot tests to remotely enable IPv6 inside school labs (PCs and servers)
 - A limited number of schools already have commercial remote management software
 - Also working on open source remote management tools
 - Work still in progress

Address Delegation in School GW

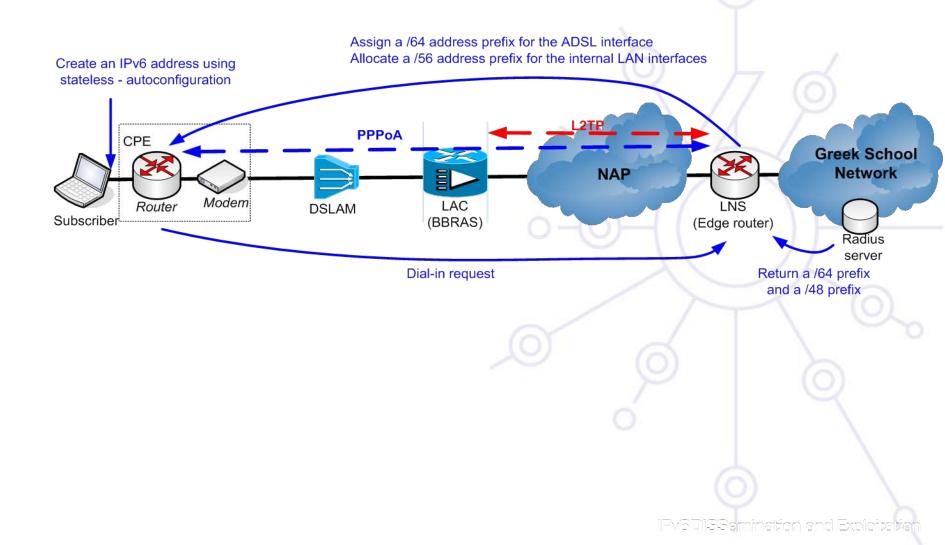
- Delegating IPv4/6 addresses in GSN is a two-step process
 - Delegate an IPv6 prefix to the WAN interface and then assign an IPv6 prefix for the LAN interfaces.
 - Use another -different and independent- process for delegating IPv4 addresses.
- Scenario A Simple

CEPLOY

- WAN interface gets an /128 IPv6 address via IPCPv6 or IPv6 loopback is statically configured.
- LAN interface(s) is manually configured.
- Statically set a static route at the LNS towards the CPE
- Easy to deploy to IPv6-enabled routers but difficult to manage the access network! No means to provide extra configuration parameters to the local PCs, e.g. NTP servers.

Pyran prasiumation and explored

Address Delegation in School GWs (#2)


• Scenario B – Using DHCP-PD

deploy

- WAN interface gets an /64 prefix -instead of specific IPv6 address- by using IPCPv6. If there is a need for a static address assignment to the school router, the *Frame-Interface-ID** should also be provided.
- Internal LAN interfaces are automatically configured using DHCP-PD (prefix delegation). This process takes place in IP layer, aka independent of the PPP session.
- Automatically, a static route towards the CPE is set at the LNS.
- This scenario allows full automated interface configuration while it is possible to provide extra configuration parameters to the local PCs.

Address Delegation in School GWs (#3)

CEPLOY

Cooperation

- GSN has successfully cooperated the last years with other organizations, research projects, and companies to leverage results
 - Greek Research Network GRNET (www.grnet Apgrnet
 - Long term knowledge transfer between NOCs
 - 6NET (www.6net.org)
 - Project participated to the design phases and first trials
 - Cisco Systems
 - Provide technical expertise and support at pilot phase
 - 6DISS (www.6diss.org)
 - Training of GSN engineers in 6DISS IPv6 workshops
 - 6DEPLOY (www.6deploy.org)

......

Pyran bus northanna stallar

GSN Experiences

- IPv6 deployment in a large and complicated network is achievable with reasonable cost in terms of equipment and man power effort
- IPv6 technology is mature and can be deployed without the fear of network collapse
- Open source software allowed quicker upgrade of GSN services

GSN Experiences (#2)

- BUT, IPv6 transitions should start cautiously in order to:
 - Gain technical experience and become familiar with IPv6
 - Locate and diagnose possible problems
 - Decide beforehand to long term deployment strategies to avoid unnecessary costs
 - It is important IPv6 deployment to be planned with equipment upgrades

ΠΑΝΕΛΛΗΝΙΟ ΣΧΟΛΙΚΟ ΔΙΚΤΥΟ

(0)

0

U

 \mathfrak{O}

0

το δίκτυο στην υπηρεσία της εκπαίδευσης

